Deep Reservoir Computing Using Cellular Automata
نویسندگان
چکیده
Recurrent Neural Networks (RNNs) have been a prominent concept within artificial intelligence. They are inspired by Biological Neural Networks (BNNs) and provide an intuitive and abstract representation of how BNNs work. Derived from the more generic Artificial Neural Networks (ANNs), the recurrent ones are meant to be used for temporal tasks, such as speech recognition, because they are capable of memorizing historic input. However, such networks are very time consuming to train as a result of their inherent nature. Recently, Echo State Networks and Liquid State Machines have been proposed as possible RNN alternatives, under the name of Reservoir Computing (RC). RCs are far more easy to train. In this paper, Cellular Automata are used as reservoir, and are tested on the 5-bit memory task (a well known benchmark within the RC community). The work herein provides a method of mapping binary inputs from the task onto the automata, and a recurrent architecture for handling the sequential aspects of it. Furthermore, a layered (deep) reservoir architecture is proposed. Performances are compared towards earlier work, in addition to its single-layer version. Results show that the single CA reservoir system yields similar results to state-of-the-art work. The system comprised of two layered reservoirs do show a noticeable improvement compared to a single CA reservoir. This indicates potential for further research and provides valuable insight on how to design CA reservoir systems.
منابع مشابه
BI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION BY MULTI-STEP PARALLEL CELLULAR AUTOMATA
Parallel Cellular Automata (PCA) previously has been employed for optimizing bi-objective reservoir operation, where one release is used to meet both objectives. However, if a single release can only be used for one objective, meaning two separate sets of releases are needed, the method is not applicable anymore. In this paper, Multi-Step Parallel Cellular Automata (MSPCA) has been developed fo...
متن کاملReservoir Computing Using Non-Uniform Binary Cellular Automata
The Reservoir Computing (RC) paradigm utilizes a dynamical system, i.e., a reservoir, and a linear classifier, i.e., a read-out layer, to process data from sequential classification tasks. In this paper the usage of Cellular Automata (CA) as a reservoir is investigated. The use of CA in RC has been showing promising results. In this paper, selected state-of-the-art experiments are reproduced. I...
متن کاملA Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata
The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...
متن کاملMachine Learning Using Cellular Automata Based Feature Expansion and Reservoir Computing
In this paper, we introduce a novel framework of cellular automata based computing that is capable of long short-term memory. Cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.02806 شماره
صفحات -
تاریخ انتشار 2017